Here's a simple Java program to generate the Fibonacci series:
```
import java.util.Scanner;
public class FibonacciSeries {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter the number of terms: ");
int n = scanner.nextInt();
scanner.close();
System.out.println("Fibonacci Series up to " + n + " terms:");
for (int i = 0; i < n; i++) {
System.out.print(fibonacci(i) + " ");
}
}
public static int fibonacci(int n) {
if (n <= 1) {
return n;
} else {
return fibonacci(n - 1) + fibonacci(n - 2);
}
}
}
```
This program uses recursion to calculate each Fibonacci number. However, this approach can be inefficient for large values of `n` due to repeated calculations.
To optimize the program, you can use dynamic programming to store previously calculated Fibonacci numbers:
```
import java.util.Scanner;
public class FibonacciSeries {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.print("Enter the number of terms: ");
int n = scanner.nextInt();
scanner.close();
System.out.println("Fibonacci Series up to " + n + " terms:");
int[] fib = new int[n];
fib[0] = 0;
fib[1] = 1;
for (int i = 2; i < n; i++) {
fib[i] = fib[i - 1] + fib[i - 2];
}
for (int i = 0; i < n; i++) {
System.out.print(fib[i] + " ");
}
}
}
```
This optimized version calculates each Fibonacci number only once, resulting in improved performance for large values of `n`.
No comments:
Post a Comment