google.com, pub-4617457846989927, DIRECT, f08c47fec0942fa0 Learn to enjoy every minute of your life.Only I can change my life.: Python program for robotics engineering

Tuesday, April 1, 2025

Python program for robotics engineering

 Here's a simple Python program for robotics engineering that demonstrates a robotic arm simulation:


Robotic Arm Simulation

```

import matplotlib.pyplot as plt

import numpy as np


Define the robotic arm's joint angles

joint_angles = np.array([0, 0, 0, 0, 0, 0])


Define the robotic arm's link lengths

link_lengths = np.array([1, 1, 1, 1, 1, 1])


Define the robotic arm's end-effector position

end_effector_position = np.array([0, 0, 0])


Define the forward kinematics function

def forward_kinematics(joint_angles, link_lengths):

    # Initialize the transformation matrix

    transformation_matrix = np.eye(4)

    

    # Iterate over each joint angle and link length

    for i in range(len(joint_angles)):

        # Calculate the rotation matrix for the current joint angle

        rotation_matrix = np.array([

            [np.cos(joint_angles[i]), -np.sin(joint_angles[i]), 0, 0],

            [np.sin(joint_angles[i]), np.cos(joint_angles[i]), 0, 0],

            [0, 0, 1, 0],

            [0, 0, 0, 1]

        ])

        

        # Calculate the translation matrix for the current link length

        translation_matrix = np.array([

            [1, 0, 0, link_lengths[i]],

            [0, 1, 0, 0],

            [0, 0, 1, 0],

            [0, 0, 0, 1]

        ])

        

        # Update the transformation matrix

        transformation_matrix = np.dot(transformation_matrix, np.dot(rotation_matrix, translation_matrix))

    

    # Return the end-effector position

    return transformation_matrix[:3, 3]


Define the inverse kinematics function

def inverse_kinematics(end_effector_position, link_lengths):

    # Initialize the joint angles

    joint_angles = np.zeros(len(link_lengths))

    

    # Iterate over each link length

    for i in range(len(link_lengths)):

        # Calculate the joint angle for the current link length

        joint_angles[i] = np.arctan2(end_effector_position[1], end_effector_position[0]) - np.sum(joint_angles[:i])

    

    # Return the joint angles

    return joint_angles


Simulate the robotic arm

while True:

    # Get the end-effector position from the user

    end_effector_position = np.array([float(input("Enter x: ")), float(input("Enter y: ")), float(input("Enter z: "))])

    

    # Calculate the joint angles using inverse kinematics

    joint_angles = inverse_kinematics(end_effector_position, link_lengths)

    

    # Calculate the end-effector position using forward kinematics

    simulated_end_effector_position = forward_kinematics(joint_angles, link_lengths)

    

    # Print the simulated end-effector position

    print("Simulated end-effector position:", simulated_end_effector_position)

    

    # Plot the robotic arm

    plt.plot([0, simulated_end_effector_position[0]], [0, simulated_end_effector_position[1]], 'b-')

    plt.plot([0, 0], [0, 0], 'ro')

    plt.plot([simulated_end_effector_position[0], simulated_end_effector_position[0]], [simulated_end_effector_position[1], simulated_end_effector_position[1]], 'ro')

    plt.axis('equal')

    plt.show()

```


This program simulates a robotic arm with six joints and links. It uses forward and inverse kinematics to calculate the end-effector position and joint angles, respectively. The program also plots the robotic arm using matplotlib.


Example Use Cases

1. *Robotic Arm Simulation*: This program can be used to simulate a robotic arm's movement and calculate its end-effector position.

2. *Inverse Kinematics*: This program can be used to calculate the joint angles required to reach a specific end-effector position.

3. *Forward Kinematics*: This program can be used to calculate the end-effector position given the joint angles.


Advice

1. *Understand the Math*: Make sure you understand the math behind forward and inverse kinematics.

2. *Use a Library*: Consider using a library like PyRobot or Robotics Library to simplify the simulation process.

3. *Visualize the Results*: Use a library like matplotlib to visualize the robotic arm's movement and end-effector position.


Here's the continuation of the Python program for robotics engineering:


Advanced Topics

*1. Trajectory Planning*

Trajectory planning involves calculating the motion of a robot over time. This can be done using techniques like polynomial interpolation or splines.


```

import numpy as np


Define the trajectory points

trajectory_points = np.array([

    [0, 0, 0],

    [1, 1, 1],

    [2, 2, 2],

    [3, 3, 3]

])


Define the trajectory duration

trajectory_duration = 10


Calculate the trajectory

trajectory = np.zeros((trajectory_duration, 3))

for i in range(trajectory_duration):

    t = i / trajectory_duration

    trajectory[i] = np.interp(t, np.linspace(0, 1, len(trajectory_points)), trajectory_points)


Plot the trajectory

import matplotlib.pyplot as plt

plt.plot(trajectory[:, 0], trajectory[:, 1], trajectory[:, 2])

plt.show()

```


*2. Control Systems*

Control systems involve designing controllers to regulate the behavior of a robot. This can be done using techniques like PID control or model predictive control.


```

import numpy as np

import matplotlib.pyplot as plt


Define the plant dynamics

plant_dynamics = np.array([

    [0, 1],

    [0, 0]

])


Define the controller gains

controller_gains = np.array([10, 5])


Define the reference trajectory

reference_trajectory = np.array([1, 1])


Simulate the system

time = np.linspace(0, 10, 100)

state = np.zeros((len(time), 2))

for i in range(len(time)):

    state[i] = np.dot(plant_dynamics, state[i-1]) + np.dot(controller_gains, reference_trajectory - state[i-1])


Plot the results

plt.plot(time, state[:, 0], label='Position')

plt.plot(time, state[:, 1], label='Velocity')

plt.legend()

plt.show()

```


*3. Computer Vision*

Computer vision involves using cameras and other sensors to perceive the environment. This can be done using techniques like object detection or SLAM.


```

import cv2


Capture video from the camera

cap = cv2.VideoCapture(0)


while True:

    # Read a frame from the camera

    ret, frame = cap.read()


    # Convert the frame to grayscale

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)


    # Detect edges in the frame

    edges = cv2.Canny(gray, 50, 150)


    # Display the edges

    cv2.imshow('Edges', edges)


    # Exit on key press

    if cv2.waitKey(1) & 0xFF == ord('q'):

        break


Release the camera

cap.release()


Close all windows

cv2.destroyAllWindows()



Here's the continuation of the Python program for robotics engineering:


Advanced Computer Vision Topics

*1. Object Detection*

Object detection involves identifying and locating objects within an image or video stream. This can be done using techniques like YOLO or SSD.


```

import cv2


Load the YOLOv3 model

net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")


Load the COCO dataset classes

classes = []

with open("coco.names", "r") as f:

    classes = [line.strip() for line in f.readlines()]


Capture video from the camera

cap = cv2.VideoCapture(0)


while True:

    # Read a frame from the camera

    ret, frame = cap.read()


    # Get the frame's height and width

    height, width, _ = frame.shape


    # Create a blob from the frame

    blob = cv2.dnn.blobFromImage(frame, 1/255, (416, 416), (0,0,0), True, crop=False)


    # Set the input blob for the network

    net.setInput(blob)


    # Run the forward pass to get the network outputs

    outputs = net.forward(net.getUnconnectedOutLayersNames())


    # Create a list to store the detected objects

    objects = []


    # Iterate over the outputs

    for output in outputs:

        # Iterate over the detections

        for detection in output:

            # Get the scores, class_id, and confidence

            scores = detection[5:]

            class_id = np.argmax(scores)

            confidence = scores[class_id]


            # Filter out weak predictions

            if confidence > 0.5 and class_id == 0:

                # Get the object's bounding box

                center_x = int(detection[0] * width)

                center_y = int(detection[1] * height)

                w = int(detection[2] * width)

                h = int(detection[3] * height)


                # Get the object's coordinates

                x = int(center_x - w / 2)

                y = int(center_y - h / 2)


                # Append the object to the list

                objects.append((x, y, w, h))


    # Draw rectangles around the detected objects

    for obj in objects:

        cv2.rectangle(frame, obj, (0, 255, 0), 2)


    # Display the frame

    cv2.imshow('Object Detection', frame)


    # Exit on key press

    if cv2.waitKey(1) & 0xFF == ord('q'):

        break


Release the camera

cap.release()


Close all windows

cv2.destroyAllWindows()

```


*2. SLAM (Simultaneous Localization and Mapping)*

SLAM involves constructing a map of an unknown environment while simultaneously localizing a robot within that environment. This can be done using techniques like EKF-SLAM or Graph-SLAM.


```

import numpy as np

import matplotlib.pyplot as plt


Define the robot's initial pose

x = 0

y = 0

theta = 0


Define the map's dimensions

map_width = 10

map_height = 10


Define the number of landmarks

num_landmarks = 10


Initialize the landmark positions

landmark_positions = np.random.rand(num_landmarks, 2)


Initialize the map

map = np.zeros((map_height, map_width))


Simulate the robot's movement

for i in range(100):

    # Update the robot's pose

    x += np.cos(theta)

    y += np.sin(theta)

    theta += 0.1


    # Get the landmark measurements

    measurements = np.zeros((num_landmarks, 2))

    for j in range(num_landmarks):

        measurements[j] = np.array([landmark_positions[j, 0] - x, landmark_positions[j, 1] - y])


    # Update the map

    for j in range(num_landmarks):

        map[int(landmark_positions[j, 1]), int(landmark_positions[j, 0])] = 1


    # Display the map

    plt.imshow(map, cmap='binary')

    plt.plot(x, y, 'ro')

    plt.show(block=False)

    plt.pause(0.1)


Close all windows

plt.close('all')


No comments:

Post a Comment

Biggest achievements of life

 Here are the biggest achievements of life, explained with additional examples: 1. Finding Purpose and Fulfillment Discovering one's pas...